Discussion

Adaptive management in the context of barriers in European freshwater ecosystems

Kim Birnie-Gauvin a,*, Jeroen S. Tummers b, Martyn C. Lucas b, Kim Aarestrup a

a DTU AQUA, National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
b Aquatic Animal Ecology Research Group, Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK

Article info

Article history:
Received 19 June 2017
Received in revised form 12 August 2017
Accepted 7 September 2017

Keywords:
Adaptive management
Barriers
Freshwater ecosystems
Stakeholders
Conservation

Abstract

Many natural habitats have been modified to accommodate for the presence of humans and their needs. Infrastructures — such as hydroelectric dams, weirs, culverts and bridges — are now a common occurrence in streams and rivers across the world. As a result, freshwater ecosystems have been altered extensively, affecting both biological and geomorphological components of the habitats. Many fish species rely on these freshwater ecosystems to complete their lifecycles, and the presence of barriers has been shown to reduce their ability to migrate and sustain healthy populations. In the long run, barriers may have severe repercussions on population densities and dynamics of aquatic animal species. There is currently an urgent need to address these issues with adequate conservation approaches. Adaptive management provides a relevant approach to managing barriers in freshwater ecosystems as it addresses the uncertainties of dealing with natural systems, and accommodates for future unexpected events, though this approach may not be suitable in all instances. A literature search on this subject yielded virtually no output. Hence, we propose a step-by-step guide for implementing adaptive management, which could be used to manage freshwater barriers.

1. Context: barriers in European freshwater ecosystems

In comparison to their terrestrial counterparts, freshwater taxa are on average more imperiled (Dudgeon et al., 2006; Strayer and Dudgeon, 2010; Carrizo et al., 2013). Freshwater fish species represent approximately 25% of all living vertebrates, many of which are threatened (IUCN, 2016). Given the linear nature of freshwater systems, connectivity may be heavily affected as a result of the presence of in-river barriers (Stanford et al., 1996). Historically, rivers and their surroundings have been used for anthropogenic purposes more than any other habitat, which over centuries, has led to the loss of the original integrity of water courses (Jungwirth, 1998; Jager et al., 2001). Today, the majority of large rivers have been modified in one way or another — for the purposes of hydroelectric power plants (Welcomme, 1995) or other artificial barriers like dams, weirs, or road crossings (Jungwirth et al., 2000; Nilsson et al., 2005), posing increasing threats to freshwater ecosystems and the mobile biota, particularly fish, that live within them (Arthington et al., 2016).

In Europe, all major rivers, except for the Pechora River in Russia (Studenov et al., 2008), are now fragmented by artificial dams and weirs (Tockner et al., 2009). The high (and increasing) density of river barriers is contributing to the poor habitat quality and loss of biodiversity of freshwater systems in contravention of the European Union’s Water Framework Directive (Acreman and Ferguson, 2010; Reyjol et al., 2014). Increasingly, barrier removal is viewed as a necessary management measure to reinstate natural connectivity within and amongst ecosystems (Garcia de Leaniz, 2008; Tonra et al., 2015), though we still have little knowledge to make predictions about the biological and geomorphological trajectory of a river system once a barrier has been removed (Pizzuto, 2002). Whilst removal projects for large barriers have revealed quick recovery of key biological components (Tonra et al., 2015), the same cannot be said of barriers in small streams as evidence is currently lacking (Tummers et al., 2016a). The presence of small-to-medium sized impoundments (i.e., height below 10m) is extensive in European streams and rivers, providing us with every reason to investigate their effects in order to enhance and focus management efforts.
2. Management of barriers

Many barriers in European rivers originated in the 10th to 19th centuries to operate mills (Downward and Skinner, 2005; Nützmann et al., 2011) and a high proportion, often rebuilt or modified multiple times, are now redundant (Downward and Skinner, 2005). However, some mill weirs are of historical significance or are being converted for operation as low-head hydroelectric power facilities (Watkin et al., 2012). Since the 1950s, the approach to implement dams for achieving water storage has been to design and operate reservoirs so that they fill with sediments slowly (Palmieri et al., 2001) but some are approaching the end of their operational lives. Currently, there are challenging issues regarding the proper management of barriers, which may be addressed by an adaptive management (AM) approach.

AM stems from the idea that ecosystem management and conservation practice is a dynamic process, and thus should be modified as we gain further knowledge to achieve management objectives (Holling, 1978; Lindenmayer and Burgman, 2005; Westgate et al., 2013). Such an approach is especially appropriate when dealing with ecological resources, which are dynamic in nature, and hence would provide an appropriate method to manage barriers (for example management of flow characteristics – see Baumgartner et al., 2014; Summers et al., 2015). This dynamic conservation approach has grown greatly since the seminal work of Walters and Hilborn (1976) and Holling (1978), and is now considered fundamental to sustainable practices (Westgate et al., 2013; Williams and Brown, 2014). An adaptive approach requires extensive planning, along with an active and systematic effort to gather and document information, as well as the early involvement of stakeholders in the decision-making process (Lindenmayer and Burgman, 2005). There are four fundamental elements to AM, as identified by Davis and Shaw (2001): (1) acknowledging the uncertainties associated with management policies, (2) formulating management policies as testable hypotheses, (3) searching, using and assessing information in order to test hypotheses, and (4) adapting management policies periodically as new information is acquired.

While AM is widely supported in theory (Fabricius and Cundill, 2014), few real-world examples have been reported in practice (Keith et al., 2011; Westgate et al., 2013). Most applications test a single management option at a time, and change their approach only when it fails (Duncan and Wintle, 2008; Keith et al., 2011). Our initial objective was to use a systematic approach to review the current state of research in adaptive barrier management of freshwater ecosystems. However, an all-time initial search on Web of Science using “(adaptiv*)AND(manage*)AND(freshwater)AND(- barrier*)” as the word string yielded only 17 results, 13 of which were eliminated at the title level, and the remaining 4 were eliminated at the abstract level, suggesting that this area of research is highly understudied. We therefore opted to include a broader spectrum of literature, and gather relevant information on AM, in an attempt to apply it directly to barrier management in freshwater ecosystems. While we hoped to provide specific examples to demonstrate how AM has been successfully used in barrier management, the literature on the topic is scarce, although this is partly because some relevant projects that have adopted an AM ethos have not used this term explicitly (Box 1). Instead, we propose a step-by-step guide for how AM could be implemented in the management of freshwater barriers (Fig. 1), along with the potential benefits and challenges that come with using such an approach.

2.1. Potential benefits

One of the main advantages of AM is its regular reviews of the

---

Box 1

Adaptive management of river barriers in action - a case study

The Yorkshire Derwent, northeast England, is a tributary of the Humber, the UK’s largest drainage. The Derwent catchment is mostly rural and has good water quality, suitable for potable supply after treatment. The catchment runs off the North Yorkshire Moors but the last 75 km of river falls only 20 m (mostly at six river barriers), creating a large managed floodplain. The downstream-most 35 km of this comprises herb-rich damp meadows. From km 68 to the confluence with the Humber, the river was designated a national Site of Special Scientific Interest (SSSI) in 1975 and an EU Special Area of Conservation (SAC) in 2005. Adjacent wetlands form an EU Special Protection Area (SPA) for wetland birds and a RAMSAR wetland site. Ranunculus fluitantis/Callitrichio-Batrachion habitat and river lamprey Lampetra fluviatilis were primary reasons for selection of the lower Derwent as an SAC. However, since 2003, Natural England (NE) determined the Derwent SAC to be in unfavourable condition for these features. Key pressures were identified as silting, and in-river barriers to fish movement. Additional management issues relating to River Derwent barriers are flood risk management (towns along the lower Derwent have flooded multiple times in recent decades); potable water supply (the lower two barriers stabilise water levels upstream for abstraction to 5 million people); new low-head hydroelectricity (the Environment Agency [EA] is required to support renewable power development alongside its environmental protection duties); flow-gauging (EA gauges river flow from several weirs) and navigation (on the lower 35 km of river, including to and from the Humber, via Barmby tidal barrage, the downstream-most barrier, managed by EA). In 2003 the EA and NE sought to develop a long-term ecological restoration plan for the river (River Derwent Restoration Project, RDRP), in an adaptive framework and consulted with a wide range of stakeholders, identifying objectives and information needs.

To provide information for the RDRP and more widely, lamprey research on the Derwent has included determining their abundance and distribution (Jang and Lucas, 2005; Nunn et al., 2008; Lucas et al., 2009); the distribution and use of lamprey habitats (Jang and Lucas, 2005); the effect of habitat fragmentation on lamprey population genetics (Bracken et al., 2015); migration and passability of different barriers and the utility of various fishway designs (Lucas et al., 2009; Foulds and Lucas, 2013; Tummers et al., 2016b; Silva et al., 2017); and hydroelectricity impacts on lampreys (Bracken and Lucas, 2013). The River Derwent Restoration Plan (Royal Haskoning, 2010) evaluated multiple options for solving in-river barrier impacts, site by site, including full barrier removal, barrier height reduction and provision of fishways. These options were appraised in concert with opportunities for reducing flood risk, managing key infrastructure (e.g. water abstraction), supporting hydroelectric development, and the economic costs and benefits. This continues to be an ongoing adaptive process. For example, in 2010 EA decided not to remove its redundant flow-gauging weir at rkm 40, but to allow commercial hydroelectric development there and build a Larinier superactive baffle fishway, in the expectation that this would be usable by river lamprey. Research has since
shown the Larinier design to be ineffective for lamprey upstream passage (Tummers et al., 2016b) and alternative passage solutions are being researched (Vowles et al., 2017). Modeling of weir height reductions at several other sites has been done and engineering options and costs for height reduction are actively being pursued. Since 2006, at Barmby tidal barrage, operations and automated controls have been altered, tested and improved to enhance fish passage, particularly through the use of the navigation lock in ‘fishway mode’ (Silva et al., 2017). Although this is intended for lamprey migration it can likely benefit eels, flatfish and Atlantic salmon Salmo salar, which are starting to recolonize the river after an absence of many decades due mostly to past pollution of the Humber estuary.

effectiveness and progress of the strategies currently in place in the river system being managed. Management objectives should be dynamic in natural systems, such as streams and rivers. Thus, as results are obtained (i.e., research findings), objectives change, and accordingly, so should management strategies (exemplified in Box 1). Modeling tools are essential to understand how environmental factors may impact a system, and to predict the outcomes of various management options (Thom, 2000; Bearlin et al., 2002). This approach helps to accommodate for future unexpected events by guiding the development of predictions and hypotheses, which is especially relevant in today’s changing world. In barrier management, fish density, diversity, recruitment and spawning provide important metrics to track the efficacy of the management strategies currently in place. Regular revisions of these data will provide valuable information for modeling purposes and help promote future management success of barriers. Modeling is also beneficial to optimize an approach. In many ways, AM resembles a scientific experiment, where hypotheses are tested, and experimentation is carried out, thus rendering the conclusions to be drawn more robust (Linkov et al., 2004).

Fig. 1. Proposed step-by-step guide to implement an adaptive approach in barrier management.
2.2. Potential challenges

A crucial component of AM is its ability to highlight the presence and importance of uncertainties, and to use these uncertainties when formulating and testing hypotheses to render the process more efficient (Davis and Shaw, 2001). In the context of AM, uncertainties arise from changing natural conditions, but also due to economic, social and political variability (Salwasser, 1993). Uncertainties must be managed by considering a wide range of adequate, realistic and reversible strategies – essentially replacing the uncertainty of a resource with the certainty of a process (Rodgers, 1997). Results should be monitored continuously, and strategies adjusted as further knowledge is gained (Beese et al., 2003; Bunnell and Dunsworth, 2004). While modeling is used to make predictions that take into account uncertainties, modeling with knowledge gaps (i.e., when all necessary information is not available) may exacerbate this uncertainty. AM is about “learning by doing”, and incorporating learnt lessons into future decisions (McDaniels and Gregory, 2004). In the context of barriers, managers may use currently available findings (e.g., in the literature or reports) on the potential benefits of barrier removal (or the negative impacts of barrier implementation) for fish and apply this information to a new system, accepting alongside it the uncertainties that come with natural systems and populations.

In the real world, AM is difficult to attain successfully. Stakeholders may have conflicting perspectives despite a conservation objective agreed by all (Lindenmayer and Burgman, 2005). In many instances, political and social circumstances make AM a difficult task to fulfill (Table 1). Scientists may not always recognize problems in AM sufficiently, as their solutions are not necessarily socially and politically acceptable (Salwasser, 1993). A common caveat to AM is how it manages human motivation, often causing a source of problems in resources management (Ludwig, 1993), especially when the main concern should revolve around the resource itself. Stakeholders can sometimes be unwilling to compromise and/or accept any change, resulting in serious delays in management efforts, and may even completely stall the process. For example, dams are often constructed to alter flow regimes and generate hydroelectricity (Dynesius and Nilsson, 1994), causing substantial impacts on the ecological health of rivers (Bunn and Arthington, 2002). Alternatively, old mills and weirs may have historical or cultural value to some, be used for recreational purposes (e.g., boating and fishing) and for supply of drinking water. Stakeholders from both sides must discuss management options, which will likely require compromises. In some cases minor stakeholders who remain completely unwilling to compromise or accept any form of change may simply have to be ignored.

When a resource collapses, all stakeholders typically agree that action must be taken. Nonetheless, complete consensus is almost unattainable, which puts management groups at a standstill. Some challenges are irreconcilable. We must therefore often take action before (scientific) consensus is reached. Unrealistic expectations can sometimes cause us to forget about the problem itself, but this adaptive approach is a trade-off between available data, and the need for immediate resource conservation. For example, the reinstatement of more natural conditions of streams and rivers via barrier removal may be a necessary action to conserve wild fish populations, despite the paucity of data on barrier removal.

Another challenge is that sometimes the problem is thought to be only marginal and so to initiate an AM process would be too costly and lengthy for the benefits. In this case, a potential solution may be to approach the entire river system as one management issue, rather than individual barriers within the system. In catchment management, barriers in small lowland streams are often disregarded and viewed as non-impactful obstacles, though their combined effects are in fact largely underestimated (Tummers et al., 2016a; Birnie-Gauvin et al., 2017). In many instances, too much emphasis is placed on the measurable economic interests of stakeholders resulting in the underappreciation of conservation problems (often unmeasurable) at hand, thereby slowing the process of experimentation, learning and adaptation. Management then becomes stuck at the modeling step because research is deemed too expensive, which comes at the cost of ecological sustainability.

3. Implementing adaptive management

We propose a guide to implement adaptive management in the real world in Fig. 1. Before initiating an AM approach, managers must first determine whether all of the four following components are present: (1) knowledge gaps, (2) prospects for learning and an expected ecological value, (3) opportunities for reconsiderations and alternative options (i.e., if only one option is viable, adaptive management is not an appropriate approach), and (4) sufficient funding. If all four components are present, then one may initiate the AM process, which begins with identifying and involving all relevant stakeholders. Managers must ask themselves three important questions: Are there highly valuable resources at stake? Is the scenario highly politically-involved? Is there a high degree of uncertainty revolving around this issue? If “yes” is answered to any of these questions, it is highly recommended that managers seek the help of independent peer-reviewers to help the decision-making process. The following step is one of the most critical steps in AM: setting clear objectives, which are agreed upon by all stakeholders. Without agreement, the process cannot move forward, sometimes at the cost of ecological resilience. Independent peer-reviewers may be helpful, but if the opinions of stakeholders are irreconcilable, then an alternate management approach must be investigated. Managers must then identify measurable indicators (of the chosen management actions), which must again be agreed upon. The modeling process subsequently begins, which helps the development of hypotheses and predictions, and vice versa. Following modeling, large-scale experimentation is carried out, where the outcomes are evaluated. If the outcomes are not satisfactory, then more modeling and hypothesis-testing may be needed. If the outcomes are deemed satisfactory by stakeholders, the agreed upon management actions may be implemented and evaluated repeatedly at regular intervals. Discussions, reflections and adaptations to the management approach should be undertaken continuously. Every step of this process should be

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Underlying incentive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroelectric dam owner</td>
<td>Economic value, provision of energy</td>
</tr>
<tr>
<td>Residents of local municipality</td>
<td>Flood risk (economic impact), cultural heritage, recreation (boating, fishing, wildlife)</td>
</tr>
<tr>
<td>Environmental protection agencies</td>
<td>Flow gauging, flood risk</td>
</tr>
<tr>
<td>Water companies</td>
<td>Economic value, water abstraction for drinking water</td>
</tr>
<tr>
<td>Farmers of adjacent land</td>
<td>Economic value, water abstraction for crops, flood risk adjacent to river</td>
</tr>
<tr>
<td>Boat navigation</td>
<td>Channel depth management, economic value</td>
</tr>
<tr>
<td>Highways/rail authority</td>
<td>Economic value, transport where barrier issue is linked to road/rail transport (culvert, bridge infrastructure)</td>
</tr>
<tr>
<td>Fish farmers</td>
<td>Economic value, stocking</td>
</tr>
<tr>
<td>Recreational fishing</td>
<td>Economic value, intrinsic values</td>
</tr>
<tr>
<td>Commercial fishing</td>
<td>Economic value, food provision</td>
</tr>
<tr>
<td>Conservation bodies</td>
<td>Maintaining biodiversity, environmental and population sustainability</td>
</tr>
</tbody>
</table>
Table 2
Limitations of the adaptive management approach.

<table>
<thead>
<tr>
<th>Instances when NOT to use adaptive management</th>
</tr>
</thead>
<tbody>
<tr>
<td>To delay a process.</td>
</tr>
<tr>
<td>When there are no knowledge gaps.</td>
</tr>
<tr>
<td>When no clear objectives have been set.</td>
</tr>
<tr>
<td>When funding is a problem.</td>
</tr>
<tr>
<td>When opportunities for improvement lack.</td>
</tr>
<tr>
<td>When later reconsiderations are not an option.</td>
</tr>
<tr>
<td>When alternatives are limited.</td>
</tr>
<tr>
<td>When mistakes are irreversible.</td>
</tr>
<tr>
<td>When no measurable indicators are available.</td>
</tr>
<tr>
<td>Irreconcilable stakeholders</td>
</tr>
</tbody>
</table>

documented adequately.

4. Conclusion and an outlook to the future

In many cases, “we know too little about how threats operate at large scales to be able to prevent or mitigate them” (Abell, 2002). Adaptive management attempts to deal with the uncertainties that come with “knowing too little”. Nonetheless, there are instances in which adaptive management is simply not an acceptable option (Table 2), a fact which cannot be understated - adaptive management is by no means the answer to every conservation issue. There exist several guidelines and prerequisites that must be met before one can set out to implement an adaptive management approach (Fig. 1). Under certain circumstances, it may be valuable to combine an adaptive management approach with other approaches to developed tools which can be applied at a wider scale (e.g., Fuzzy Cognitive Mapping; Özsemi and Özsemi, 2004). In cases when adaptive management can be used, it is important that the process and outcomes - for both failures and successes - be documented (either as a report or peer-reviewed article) so that others can benefit from it. It may also be beneficial to managers if a formal framework on how to implement adaptive management is available.

Acknowledgements

This contribution was funded by the European Union AMBER (Adaptive Management of Barriers in European Rivers, Grant number 689682) project as part of the Horizon 2020 Framework Programme.

References

Pizzuto, J., 2002. Effects of dam removal on river form and process: although many well-established concepts of fluvial geomorphology are relevant for evaluating the effects of dam removal, geomorphologists remain unable to forecast stream channel changes caused by the removal of specific dams. BioScience 52,


